A PROOF OF $\sinh 2 x=2 \sinh x \cosh x$

ÁNGEL PLAZA

Here we show that a hyperbolic identity as $\sinh 2 x=2 \sinh x \cosh x$, may be proved ultimately by combinatorial arguments. The proof only uses the Taylor expansions of $\sinh x$, $\cosh x$, and the Cauchy product of two power series. That is,

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}, \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

Thus if we write

$$
\begin{aligned}
& \sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

by the Cauchy product, $\sinh x \cosh x$ can be written:
$\sinh x \cosh x=\sum_{n=0}^{\infty} c_{n} x^{n}$, where $c_{n}=\left\{\begin{array}{clc}\sum_{k=0}^{m} \frac{1}{(2 k+1)!(2 m-2 k)!} & \text { if } & n=2 m+1 \\ 0 & \text { if } & n=2 m\end{array}\right\}$

Since

$$
\frac{1}{2} \sinh 2 x=x+\frac{2^{2} x^{3}}{3!}+\frac{2^{4} x^{5}}{5!}+\frac{2^{6} x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
$$

the only thing we have to prove is the identity

$$
\sum_{k=0}^{m} \frac{1}{(2 k+1)!(2 m-2 k)!}=\frac{2^{2 m}}{(2 m+1)!}
$$

Or, equivalently,

$$
\begin{aligned}
\sum_{k=0}^{m} \frac{(2 m+1)!}{(2 k+1)!(2 m-2 k)!} & =2^{2 m} \\
\sum_{k=0}^{m}\binom{2 m+1}{2 k+1} & =2^{2 m}
\end{aligned}
$$

The last equation is a consequence of the facts:

$$
\begin{align*}
(1+1)^{2 m+1}=\sum_{k=0}^{2 m+1}\binom{2 m+1}{k} & =2^{2 m+1} \tag{1}\\
(1-1)^{2 m+1}=\sum_{k=0}^{2 m+1}(-1)^{k}\binom{2 m+1}{k} & =0
\end{align*}
$$

By Eq. (2), $\sum_{k=0}^{m}\binom{2 m+1}{2 k+1}=\sum_{k=0}^{m}\binom{2 m+1}{2 k}$, and using Eq. (1), the last sums are both equal to $2^{2 m}$ and the proof is done.

Department of Mathematics, Universidad de Las Palmas de Gran Canaria, 35017-Las Palmas G.C. SPAIN

E-mail address: aplaza@dmat.ulpgc.es

