
A PROOF OF sinh 2x = 2 sinh x cosh x

ÁNGEL PLAZA

Here we show that a hyperbolic identity assinh 2x = 2 sinh x cosh x, may be proved ul-
timately by combinatorial arguments. The proof only uses the Taylor expansions ofsinh x,
cosh x, and the Cauchy product of two power series. That is,
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by the Cauchy product,sinh x cosh x can be written:
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the only thing we have to prove is the identity
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The last equation is a consequence of the facts:
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, and using Eq. (1), the last sums are both

equal to22m and the proof is done.
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